Matlab in Signal Processing

\mathbf{N}

Content

Matlab in teaching

- Examples of the Bachelor lecture *Signal Processing*
- Examples of the Master lecture *Statistical and Adaptive Signal Processing*

Matlab in research

- □ Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- \Box Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs
- □ Example: UW-OFDM

Digital Signal Processing Table of Contents

- **Introduction**
- Discrete Time Signals Fundamentals
- Discrete Time LTI-Systems Fundamentals
- Fourier-Transform of Discrete Time Signals (DTFT)
- Sampling and Reconstruction
- **Correlation**
- Spectral Analysis of Discrete Time Signals (DFT, FFT, Short-Time Fourier Transformation, Applications)
- z-Transform
- Digital Filters
- State-Space Representations of Discrete Time LTI-Systems
- Vector-Matrix Representations of Discrete Time Signals and LTI-Systems
- Basics of Multirate SignalPprocessing

Discrete Time LTI-Systems - Fundamentals

Impulse response $h[n]$ **of a discrete time LTI system** The impulse response of a discrete time LTI system is the reaction $y[n] := h[n]$ of the system to the unit impulse $x[n] = \delta[n]$.

In general, the following is true for the input-output operator $T\{x[n]\}$:

$$
y[n] = T\{x[n]\} = \sum_{i=-\infty}^{\infty} x[i]h[n-i]
$$

…discrete convolution

JVU

Discrete Time LTI-Systems Examples

Example: Moving Average Filter

Output signal:
$$
y[n] = \frac{1}{M+1} \sum_{k=0}^{M} x[n-k]
$$

This system calculates the n th sample of the output sequence as the average value of $x[n], x[n-1], ..., x[n-M].$

Impulse response:
$$
h[n] = \frac{1}{M+1} \sum_{k=0}^{M} \delta[n-k]
$$

=
$$
\begin{cases} \frac{1}{M+1} & \text{for } 0 \le n \le M \\ 0 & \text{else} \end{cases}
$$

Discrete Time LTI-Systems Frequency Response ms J⊻U
m
–∞<Ω<∞
em.

■ Frequency response of an LTI-system

The term

$$
H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\Omega n}
$$
 für

für $-\infty < \Omega < \infty$

is called *frequency response* of the system.

 Real valued LTI systems feature the typical property that a sinusoidal input signal is processed into a sinusoidal output signal:

$$
x[n] = cos(\Omega n)
$$

$$
H(e^{j\Omega})
$$

$$
H(e^{j\Omega})
$$

$$
H(e^{j\Omega})
$$

$$
H(e^{j\Omega})
$$

The sinusoidal output signal experiences a modification of the amplitude with the factor $|H(e^{j\Omega})|$ and a phase shift $\arg(H(e^{j\Omega}))$ with respect to the input.

Spectral Analysis Fourier Series – Real Representation

A periodic signal $x(t)$ with the period T_0 can be decomposed into a Fourier series.

Fourier series:

$$
x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t) \right]
$$

\nPeriodic functions can be expressed as a linear combination of sine and cosine oscillations.
\n
$$
f_0 = 1/T_0 \text{ is the frequency of the fundamental\nOscillations of the frequency $f = kf_0$ are called
\n• $k = 1$: first harmonic or fundamental oscillative
\n• $k = 2$ (*n*): second (*n*th) harmonic with $f = 2f_0$ (
\n• $a_0/2$: constant component (DC component)
$$

Periodic functions can be expressed as a linear combination of sine and cosine oscillations.

= spectral representation Fourier coefficients *a^k , b^k :*

$$
a_k = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cos(2\pi k f_0 t) dt
$$

$$
b_k = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \sin(2\pi k f_0 t) dt
$$

 \Box $f_0 = 1/T_0$ is the frequency of the fundamental oscillation.

□ Oscillations of the frequency $f = k f_0$ are called the k^{th} harmonic.

- $k = 1$: first harmonic or fundamental oscillation ($f = f_0$)
- $k = 2(n)$: second (n^{th}) harmonic with $f = 2f_0 (f = nf_0)$
-

Spectral Analysis Fourier Series – Complex Representation

 \blacksquare Example: By replacing the cosine and sine waves with the Euler formulas 1 $e^{j2\pi k f_0 t} + e^{-j2\pi k f_0 t}$

$$
\cos(2\pi k f_0 t) = \frac{1}{2} \left(e^{j2\pi k f_0 t} + e^{-j2\pi k f_0 t} \right)
$$

$$
\sin(2\pi k f_0 t) = \frac{1}{2j} \left(e^{j2\pi k f_0 t} - e^{-j2\pi k f_0 t} \right)
$$

we obtain the mathematically most elegant form of the Fourier series:

Fourier series

$$
x(t) = \sum_{k=-\infty}^{\infty} \left[c_k e^{j2\pi k f_0 t}\right]
$$

Complex Fourier coefficients *c^k* = spectral representation

$$
c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-j2\pi k f_0 t} dt
$$

Discrete spectrum = line spectrum: The spectrum of the periodic signal is defined at the discrete (equidistant) frequencies $k \cdot f_0$.

- A periodic function can therefore also be understood as a weighted sum of complex oscillations.
- As with the real representation, integration must be carried out over one period. The starting time of the integration is irrelevant.

The DFT as an Approximation of the Fourier Series

■ Assuming that exactly one period of a periodic signal is sampled, the Fourier coefficients can be determined according to:

$$
c_k \approx \frac{1}{N} X[k] \quad \text{for } k = -N/2, ..., N/2 - 1
$$

(holds for even *N*, similarly for odd *N*)

■ Equality applies in the above formula if the periodic signal is bandlimited and if the sampling theorem is fulfilled.

Spectral Analysis Fourier Series – Examples

Example: Derive the Fourier series coefficients of the signal

 $x(t) = 2 + 6 \cos(2\pi f_0 t) + 4 \sin(2\pi \cdot 2 f_0 t) + 2 \cos(2\pi \cdot 3 f_0 t)$

 $(f_0 = 1$ kHz) with Matlab.

Example: Derive the Fourier series coefficients of the signal

 $x(t) = |\sin(2\pi \cdot 2f_0 t)|$

 $(f_0 = 1$ kHz) with Matlab.

JVI

Content

Matlab in teaching

- Examples of the Bachelor lecture *Signal Processing*
- Examples of the Master lecture *Statistical and Adaptive Signal Processing*

Matlab in research

- Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- \Box Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs

Example: UW-OFDM

Estimation Theory Maximum Likelihood (ML) Estimation

Example: Sinusoidal Parameter Estimation

Assume the data to be

 $x[n] = A\cos(\Omega n + \varphi) + w[n]$ $n = 0,1,..., N-1$

with $w \sim \mathcal{N}(0, \sigma^2 I)$, $A > 0$ and $0 < \Omega < \pi$. A, Ω , φ shall be estimated.

IFT-based solution:
$$
\widehat{\Omega} = \arg \max \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j\Omega n) \right|^2
$$

$$
\widehat{A} = \frac{2}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j\Omega n) \right|
$$

$$
\hat{\varphi} = \arctan \frac{-\sum_{n=0}^{N-1} x[n] \sin(\hat{\Omega} n)}{\sum_{n=0}^{N-1} x[n] \cos(\hat{\Omega} n)}
$$

JVI

JYL

Adaptive filtering example:

 $y[k] = s[k] + x'[k]$

 $y[k]$ could, e.g., be a measured ECG signal disturbed by a strong 50Hz interference, then it makes sense to feed an adaptive filter with $x[k] = \cos(2\pi \cdot 50\text{ Hz }t)$ (see Matlab example). **¹³**

Kalman Filters Extended Kalman Filter Example

Example: Vehicle Tracking

- *Assumptions: Vehicle moving at constant speed, but perturbed by wind gusts, slight speed corrections, etc., as might occur in an aircraft. The measurements are noisy versions of the range and bearing.*
	- *Tracking with Extended Kalman Filter*

Rudolf Kalman, Kurt Schlacher and Mario Huemer at EUROCAST 2013 in Gran Canaria

\mathbf{N}

Content

Matlab in teaching

- Examples of the Bachelor lecture *Signal Processing*
- Examples of the Master lecture *Statistical and Adaptive Signal Processing*

Matlab in research

- □ Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- \Box Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs
- □ Example: UW-OFDM

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

Goal: Cancellation of interspersed signals from

narrow targets with emphasis on Phase Noise

JYU

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

JYU

■ Residual PN of SR leakage increases overall system noise floor, thus degrading detection sensitivity by approx. 6 dB

Target within channel is covered in noise

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

 Employing SR leakage cancelation significantly improves target detection sensitivity

Target within channel is resolved well

JYU

- Main components of RF transceiver
	- **Transmitter**
	- □ Receiver
	- RF front-end

JYU

- Higher data rates \rightarrow higher bandwidths
- Carrier aggregation (CA) \rightarrow multiple Rx / Tx chains
- More bands \rightarrow increased RF front-end complexity

J⊻U

$$
y_{\rm BB}^{\rm Tot}[n]=\underbrace{\frac{A_{\rm LNA}}{2}y_{\rm BB}^{\rm Rx}[n]*\bar{h}_{\rm s}[n]}_{\rm wanted\;Rx\; signal}+\underbrace{\frac{\alpha_2^{\rm I}+j\alpha_2^{\rm Q}}{2}\left|A_{\rm LNA}A_{\rm PA}x_{\rm BB}[n]*h_{\rm BB}^{\rm TxL}[n]\right|^2*\bar{h}_{\rm s}[n]}_{\rm interface}+\underbrace{\frac{A_{\rm LNA}}{2}v_{\rm BB}[n]*\bar{h}_{\rm s}[n]}_{\rm noise}
$$

JYU

J⊻U

JYU

Source: A. Gebhard, C. Motz, R. S. Kanumalli, H. Pretl, and M. Huemer, "Nonlinear least-mean-squares type algorithm for secondorder interference cancellation in LTE-A RF transceivers," in 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2017, pp. 802–807.

J⊻U

Basic Research Unique Word OFDM (FWF)

■ Novel signaling scheme for digital communications

Symbol generation **Symbol generation** and the symbol generation of the symbol generation

Bit error performance

Further Research Topics

- Parameter estimation (with voestalpine)
- Non-linear adaptive filters
- NN-based data estimation for wireless systems (with SAL)
- \blacksquare Joint communications and sensing
- Feature extraction of ECG signals (with KUK Linz)
- HW architectures for DSP

…

Diploma theses in co-operation with HTLs possible and welcome!

THANK YOU!