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Discrete Time LTI-Systems - JYYU

Fundamentals

B Impulse response h[n] of adiscrete time LTI system
The impulse response of a discrete time LTI system is the reaction
y[n]: = h[n] of the system to the unit impulse x[n] = §[n].

x[nl=8[n] | Discretetimel . 1] = h[n]
| system
I ? B

—0—0—-—-0—0—-—0——~0—0—0—H—0—; —'—H(|) lllb'

le

B In general, the following is true for the input-output operator T{x[n]} :

x[n] T lyimi=toan | yInl =T {X[n]f= i X[i]h[n —i]

1 System —

h[n] ...discrete convolution




Discrete Time LTI-Systems JXXU

Examples

B Example: Moving Average Filter

M
1
Output signal: y[n] = T Z x[n — k]
k=0

This system calculates the nth sample of the output sequence as the
average value of x[n],x[n — 1], ..., x[n — M].

1

1 6[n — k]

N=

Impulse response: h[n] =

<

k=0

foro<n<M

—

M+1
0 else



Discrete Time LTI-Systems JXXU

Frequency Response

B Frequency response of an LTI-system
0 The term

H(e!*)= > h[n}e " fiir —oo < Q<o

N=—o0

Is called frequency response of the system.

B Real valued LTI systems feature the typical property that a sinusoidal input
signal is processed into a sinusoidal output signal:

x[n] = cos(«2n) y[n] = [H(e!?)| cos(¢n + arg H(e))
H(el?) >

The sinusoidal output signal experiences a modification of the amplitude with
the factor |H(e/%)| and a phase shift arg (H(efﬂ)) with respect to the input.



Spectral Analysis

Fourier Series — Real Representation

B A periodic signal x(t) with the period T, can be decomposed into a

Fourier series.

Fourier series:

Fourier coefficients a,, b,:

= spectral representation

x(t)——0 i la, cos(27kf )+ b, sin(27kft)]
k=1

Periodic functions can be expressed as a linear
combination of sine and cosine oscillations.

A

b,

Ty /2

:T3 j X(t) cos(27kf t dlt

0 —T,/2
To/2

0 -T,/2

2 jx(t) sin(27kf,t )dt

O f, = 1/T,is the frequency of the fundamental oscillation.

[0 Oscillations of the frequency f
.k

= kf, are called the k" harmonic.

1:  first harmonic or fundamental oscillation (f = f)
» k =2 (n): second (n'") harmonic with f =

2fo (f = nfy)

* a,/2: constant component (DC component)

JXU



Spectral Analysis JXU

Fourier Series - Complex Representation

B Example: By replacing the cosincle and sine waves with the Euler formulas
cos(2mkfyt) = > (ef2mkfot 4 g=J2mkfot)

1, . _
sin(2rk fot) = 2 (e2mkfot — g=J2mkfot)

we obtain the mathematically most elegant form of the Fourier series:

Fourier series Complex Fourier coefficients c,
= spectral representation
x(t) = z |cie 2™kt | Ck = 7 j x(t)eI2mkfot d¢
k=—00 ° —To/2

Discrete spectrum = line spectrum:
The spectrum of the periodic signal is defined at the
discrete (equidistant) frequencies k - f;.

B A periodic function can therefore also be understood as a weighted sum
of complex oscillations.

B As with the real representation, integration must be carried out over one
period. The starting time of the integration is irrelevant.



The DFT as an Approximation JXXU

of the Fourier Series

B Assuming that exactly one period of a periodic signal is sampled, the
Fourier coefficients can be determined according to:

1 (holds for even N,

Cy zWX[k] for k = —N /2”N [2 —1| similarlyforodd N)

X|k] ...DFT coefficients

F X(f)

t [ms]

) -1 0 1 2

B Equality applies in the above formula if the periodic signal is band-
limited and if the sampling theorem is fulfilled.



Spectral Analysis JXU

Fourier Series —- Examples

Example: Derive the Fourier series coefficients of the signal

x(t) =2+ 6cos(2nfyt) + 4sin(2m - 2fyt) + 2cos(2m - 3fyt)

(fo = 1kHz) with Matlab.

Example: Derive the Fourier series coefficients of the signal
x(t) = |sin(2m - 2f,t)|

(fo = 1kHz) with Matlab.
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Estimation Theory JV¥YU
Maximum Likelihood (ML) Estimation

Example: Sinusoidal Parameter Estimation

Assume the data to be
X[n] = Acos(Q2n + @) + w[n] n=01..N-1

with w ~N(0,621), A > 0 and 0 < Q < 7. 4, Q, ¢ shall be estimated.

2

N-1
. ~ 1
B FFT-based solution: () = arg max z x[n] exp(—jQn)
n=0

oS
I
|

N-1
z x[n]exp(—jQn)
n=0

— YN-1 x[n]sin(On)

N-1x[n]cos(On) b

¢ = arctan



Adaptive Filters

Adaptive filtering example:

ylk] = slk] + x'[k]

/

JXU

x[k] Adaptive P[k]
" (FIRY filter
input [k] output
signal / signal
Adaptive
Algorithm

error
signal

ylk] could, e.g., be a measured ECG signal disturbed by a strong 50Hz interference, then
it makes sense to feed an adaptive filter with x[k] = cos(2m - 50Hz t) (see Matlab

example).

13



Kalman Filters JX¥YU

Extended Kalman Filter Example

Example: Vehicle Tracking

B Assumptions: Vehicle moving at constant speed, but perturbed by wind gusts,
slight speed corrections, etc., as might occur in an aircraft. The measurements
are noisy versions of the range and bearing.

Tracking with Extended Kalman Filter

Rudolf Kalman, Kurt Schlacher
and Mario Huemer at
EUROCAST 2013 in Gran Canaria
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Short-Range Leakage Cancellation in JVYUy
FMCW Radar Transceivers (with Infineon)

B Goal: Cancellation of interspersed signals from
narrow targets with emphasis on Phase Noise

y[n] — y[n—3]
Channel IF—| ADC IZ*3

i SR leakage cancela-

Ts, Tofrser DPN extraction tion signal generation

OCT IF —{ADC

| —
| —
—
| —
2|2
~ —

LPF 1 Parameter
estimation




Short-Range Leakage Cancellation in JVYUy
FMCW Radar Transceivers (with Infineon)

B Residual PN of SR leakage increases overall system noise
floor, thus degrading detection sensitivity by approx. 6 dB

B Target within channel is covered in noise

—120
With SR leakage, no leakage cancelation
—122 - Without SR leakage
—124
16l Target covered in residual PN

—128| \

| | | 1 1 | | | | | | | 1 1 | | | | 1 1 | | | 1 |
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Frequency [Hz] .106
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PSD [dBm,/Hz]

Short-Range Leakage Cancellation in JVYUy
FMCW Radar Transceivers (with Infineon)

B Employing SR leakage cancelation significantly improves target
detection sensitivity

B Target within channel is resolved well

—120

With SR leakage, no leakage cancelation
—122 - Without SR leakage
= SR leakage canceled

—124 |
12 Resolved target

~128 \

—130
=132
—134 |
—136 |
—138 [

_ iLlf

—142 -

—144 |
| | 1 | | 1 | 1 | | | | | 1 | | 1 | 1 | | 1 | 1 |
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Frequency [Hz] .106
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Self Interference Cancellation in Mobile
Phone Transceiver RFICs (with Apple)

B Main components of RF transceiver

1 Transmitter
[1 Receiver

1 RF front-end

RF Transceiver

Down
Conversion

>

DFE / BB

hal

Receiver E

RF Frontend

IRVARNAVI N AW
) D) D

PLL

Frequency Synthesis

Transmitter :]

Up
Conversion

<—

DFE / BB

JXU
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Self Interference Cancellation in Mobile
Phone Transceiver RFICs (with Apple)

B Higher data rates - higher bandwidths

B Carrier aggregation (CA) - multiple Rx / Tx chains

B More bands - increased RF front-end complexity

JXU

Receivers | |
ﬁ_, L\ | > |
| > LL\\\& > L

\ / = Ll\& - |
L > Down —
LNA : >
/‘ . i L4 Conversion E D
N/ RF |
Front end B
— PLL

R - ST e TP

v . Transmitters
[ A 4 |
. Up Je
Eﬁ.ﬂ PA conversion [ DIRE /B

20



Self Interference Cancellation in Mobile JVYUy
Phone Transceiver RFICs (with Apple)

RX

Q

- ALNA _ ab + ja T 2 - ArNa -
Ypg [n] = 5 yRx[n] * hu[n) + 22122 | ALnaApazgs[n] * hgiy[n]|” * hs[n] + veB[n] * hs[n]
wanted Ex signal inter;;'ence ngso
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Self Interference Cancellation in Mobile JV¥YU

Phone Transceiver RFICs (with Apple)

|
el : RX =
of : TN o
N4 s e X N
T | RX ﬁﬁ%’a 1
Leakage | - :: —
A J—:»LNA > ADCH>hs ] m hs [1]
P y I
| - r ! i
' RX LO t 2
‘ A  __________ Receiver I ,\
S P S : :
- : TX I Adaptive
M |
Dupl ’ € < /_ X i Fil
uplexer —I_E_@‘ < OACke— LiTTx _r:_,—> |t/er
I
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J' [n] =x" [n]wi[n —1] i Digital
R Y 9 | Cancellation )
jelnl = |9/ 1] |* # hs [ S
gac1[n] = agac[n — 1]+ g1 [n] — g1 [n — 1]
eac,1 [n] = dac1|n] — Jac,[n]

~ *

peacs [n] (9 [n]x" [n]) * hs [n]
e+ (|9 [n] |"x™ [n] x [n]) * hs [n]

W[[n]:W[[n—l]—l—
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Self Interference Cancellation in Mobile JVYUy
Phone Transceiver RFICs (with Apple)
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PSD (dBFS/15kHz)

Self Interference Cancellation in Mobile

Phone Transceiver RFICs (with Apple)

B Performance Results
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Source: A. Gebhard, C. Motz, R. S. Kanumalli, H. Pretl, and M. Huemer, “Nonlinear least-mean-squares type algorithm for second-
order interference cancellation in LTE-A RF transceivers,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, CA, USA, 2017, pp. 802-807.
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Basic Research JXYU
Unique Word OFDM (FWF)

Bit error performance

B Novel signaling scheme for : .
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Further Research Topics JXXU

Parameter estimation (with voestalpine)

Non-linear adaptive filters

NN-based data estimation for wireless systems (with SAL)
Joint communications and sensing

Feature extraction of ECG signals (with KUK Linz)

HW architectures for DSP

Diploma theses in co-operation with HTLs possible and welcome!

THANK YOU!



