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Discrete time

system

Discrete Time LTI-Systems -
Fundamentals

 Impulse response 𝒉[𝒏] of a discrete time LTI system

The impulse response of a discrete time LTI system is the reaction 

𝑦[𝑛]: = ℎ[𝑛] of the system to the unit impulse 𝑥[𝑛] = 𝛿[𝑛].

 In general, the following is true for the input-output operator 𝑇 𝑥 𝑛 :
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Discrete Time LTI-Systems
Examples

 Example: Moving Average Filter
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Output signal:

Impulse response:

This system calculates the 𝑛th sample of the output sequence as the 

average value of 𝑥 𝑛 , 𝑥 𝑛 − 1 ,… , 𝑥[𝑛 −𝑀]. 
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Discrete Time LTI-Systems
Frequency Response

 Frequency response of an LTI-system

 The term

is called frequency response of the system.

 Real valued LTI systems feature the typical property that a sinusoidal input 

signal is processed into a sinusoidal output signal:

The sinusoidal output signal experiences a modification of the amplitude with 

the factor 𝐻 𝑒𝑗Ω and a phase shift arg 𝐻 𝑒𝑗Ω with respect to the input.
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x[n] = cos(n) y[n] = |H(ej)| cos(n + arg H(ej))



Spectral Analysis
Fourier Series – Real Representation

 A periodic signal 𝑥(𝑡) with the period 𝑇0 can be decomposed into a 

Fourier series. 

 𝑓0 = 1/𝑇0 is the frequency of the fundamental oscillation.

 Oscillations of the frequency 𝑓 = 𝑘𝑓0 are called the 𝑘th harmonic.

• 𝑘 = 1: first harmonic or fundamental oscillation (𝑓 = 𝑓0)

• 𝑘 = 2 (𝑛): second (𝑛th) harmonic with 𝑓 = 2𝑓0 (𝑓 = 𝑛𝑓0)

• 𝑎0/2: constant component (DC component)
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Fourier series:
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= spectral representation

Periodic functions can be expressed as a linear 

combination of sine and cosine oscillations.

Fourier coefficients ak, bk:



Spectral Analysis
Fourier Series – Complex Representation

 Example: By replacing the cosine and sine waves with the Euler formulas

we obtain the mathematically most elegant form of the Fourier series:

 A periodic function can therefore also be understood as a weighted sum 

of complex oscillations. 

 As with the real representation, integration must be carried out over one 

period. The starting time of the integration is irrelevant.
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cos 2𝜋𝑘𝑓0𝑡 =
1

2
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Complex Fourier coefficients ck
= spectral representation

Fourier series

Discrete spectrum = line spectrum:

The spectrum of the periodic signal is defined at the 

discrete (equidistant) frequencies 𝑘 ⋅ 𝑓0.



The DFT as an Approximation
of the Fourier Series

 Assuming that exactly one period of a periodic signal is sampled, the 

Fourier coefficients can be determined according to:

 Equality applies in the above formula if the periodic signal is band-

limited and if the sampling theorem is fulfilled.

(holds for even N, 

similarly for odd N)
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Spectral Analysis
Fourier Series – Examples

Example: Derive the Fourier series coefficients of the signal

(𝑓0 = 1kHz) with Matlab.

Example: Derive the Fourier series coefficients of the signal

(𝑓0 = 1kHz) with Matlab.

10

𝑥 𝑡 = 2 + 6 cos 2𝜋𝑓0𝑡 + 4 sin 2𝜋 ∙ 2𝑓0𝑡 + 2cos 2𝜋 ∙ 3𝑓0𝑡

𝑥 𝑡 = sin 2𝜋 ∙ 2𝑓0𝑡
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Estimation Theory
Maximum Likelihood (ML) Estimation

Example: Sinusoidal Parameter Estimation

Assume the data to be

with w ~𝓝(0,𝜎2I), 𝐴 > 0 and 0 < Ω < 𝜋. 𝐴, Ω, 𝜑 shall be estimated.

 FFT-based solution:

1,...,1,0          ][)cos(][ −=++= NnnwnAnx 
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Adaptive Filters

Adaptive filtering example:

𝑦 𝑘 could, e.g., be a measured ECG signal disturbed by a strong 50Hz interference, then 

it makes sense to feed an adaptive filter with 𝑥 𝑘 = cos(2𝜋 ∙ 50Hz 𝑡) (see Matlab

example).
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Adaptive
(FIR) filter

𝒘[𝑘]input
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error
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Adaptive 
Algorithm

𝑥[𝑘] ො𝑦[𝑘]

𝑦[𝑘]

𝑒[𝑘]

𝑦 𝑘 = 𝑠 𝑘 + 𝑥′ 𝑘



Kalman Filters
Extended Kalman Filter Example

Example: Vehicle Tracking

 Assumptions: Vehicle moving at constant speed, but perturbed by wind gusts, 

slight speed corrections, etc., as might occur in an aircraft. The measurements 

are noisy versions of the range and bearing.

 Tracking with Extended Kalman Filter
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Rudolf Kalman, Kurt Schlacher 

and Mario Huemer at 

EUROCAST 2013 in Gran Canaria
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Short-Range Leakage Cancellation in
FMCW Radar Transceivers (with Infineon)

 Goal: Cancellation of interspersed signals from 

narrow targets with emphasis on Phase Noise



Short-Range Leakage Cancellation in
FMCW Radar Transceivers (with Infineon)

 Residual PN of SR leakage increases overall system noise

floor, thus degrading detection sensitivity by approx. 6 dB

 Target within channel is covered in noise
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Short-Range Leakage Cancellation in
FMCW Radar Transceivers (with Infineon)

 Employing SR leakage cancelation significantly improves target 

detection sensitivity

 Target within channel is resolved well

18



Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)

 Main components of RF transceiver

 Transmitter

 Receiver

 RF front-end
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Receivers
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Demodulator
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DFE / BB
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Conversion
LNA

Up
conversionPA ModulatorUp

conversionPA DFE / BB

PLL
PLL

PLL
PLL

Transmitters

Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)

 Higher data rates → higher bandwidths

 Carrier aggregation (CA) → multiple Rx / Tx chains

 More bands → increased RF front-end complexity
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Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)
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Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)
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Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)
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Self Interference Cancellation in Mobile 
Phone Transceiver RFICs (with Apple)
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Source: A. Gebhard, C. Motz, R. S. Kanumalli, H. Pretl, and M. Huemer, “Nonlinear least-mean-squares type algorithm for second-

order interference cancellation in LTE-A RF transceivers,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers, 

Pacific Grove, CA, USA, 2017, pp. 802–807.

 Performance Results



Basic Research
Unique Word OFDM (FWF)

 Novel signaling scheme for

digital communications

Bit error performance

Symbol generation Welch Spectrum



Further Research Topics

 Parameter estimation (with voestalpine)

 Non-linear adaptive filters

 NN-based data estimation for wireless systems (with SAL)

 Joint communications and sensing

 Feature extraction of ECG signals (with KUK Linz)

 HW architectures for DSP

 …

 Diploma theses in co-operation with HTLs possible and welcome!

THANK YOU!


