Matlab in Signal Processing

J⊻U

Content

Matlab in teaching

- □ Examples of the Bachelor lecture Signal Processing
- Examples of the Master lecture Statistical and Adaptive Signal Processing

Matlab in research

- Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs
- □ Example: UW-OFDM

Digital Signal Processing Table of Contents

- Introduction
- Discrete Time Signals Fundamentals
- Discrete Time LTI-Systems Fundamentals
- Fourier-Transform of Discrete Time Signals (DTFT)
- Sampling and Reconstruction
- Correlation
- Spectral Analysis of Discrete Time Signals (DFT, FFT, Short-Time Fourier Transformation, Applications)
- z-Transform
- Digital Filters
- State-Space Representations of Discrete Time LTI-Systems
- Vector-Matrix Representations of Discrete Time Signals and LTI-Systems
- Basics of Multirate SignalPprocessing

Discrete Time LTI-Systems -Fundamentals

■ Impulse response h[n] of a discrete time LTI system The impulse response of a discrete time LTI system is the reaction y[n]: = h[n] of the system to the unit impulse $x[n] = \delta[n]$.

I In general, the following is true for the input-output operator $T\{x[n]\}$:

$$y[n] = T\left\{x[n]\right\} = \sum_{i=-\infty}^{\infty} x[i]h[n-i]$$

...discrete convolution

Discrete Time LTI-Systems Examples

Example: Moving Average Filter

Output signal:
$$y[n] = \frac{1}{M+1} \sum_{k=0}^{M} x[n-k]$$

This system calculates the *n*th sample of the output sequence as the average value of x[n], x[n-1], ..., x[n-M].

Impulse response:
$$h[n] = \frac{1}{M+1} \sum_{k=0}^{M} \delta[n-k]$$
$$= \begin{cases} \frac{1}{M+1} & \text{for } 0 \le n \le M\\ 0 & \text{else} \end{cases}$$

Discrete Time LTI-Systems Frequency Response

I Frequency response of an LTI-system

☐ The term

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\Omega n}$$

für $-\infty < \Omega < \infty$

is called *frequency response* of the system.

Real valued LTI systems feature the typical property that a sinusoidal input signal is processed into a sinusoidal output signal:

The sinusoidal output signal experiences a modification of the amplitude with the factor $|H(e^{j\Omega})|$ and a phase shift $\arg(H(e^{j\Omega}))$ with respect to the input.

Spectral Analysis Fourier Series – Real Representation

A periodic signal x(t) with the period T_0 can be decomposed into a Fourier series.

Fourier series:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t) \right]$$

Periodic functions can be expressed as a linear combination of sine and cosine oscillations.

Fourier coefficients $a_{\underline{k}}, \underline{b}_{\underline{k}}$ = spectral representation

$$a_{k} = \frac{2}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) \cos(2\pi k f_{0} t) dt$$
$$b_{k} = \frac{2}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) \sin(2\pi k f_{0} t) dt$$

 \Box $f_0 = 1/T_0$ is the frequency of the fundamental oscillation.

 \Box Oscillations of the frequency $f = kf_0$ are called the k^{th} harmonic.

- k = 1: first harmonic or fundamental oscillation ($f = f_0$)
- k = 2 (*n*): second (*n*th) harmonic with $f = 2f_0 (f = nf_0)$
- $a_0/2$: constant component (DC component)

Spectral Analysis Fourier Series – Complex Representation

Example: By replacing the cosine and sine waves with the Euler formulas $\cos(2\pi k f_0 t) = \frac{1}{2} \left(e^{j2\pi k f_0 t} + e^{-j2\pi k f_0 t} \right)$

$$\sin(2\pi k f_0 t) = \frac{1}{2j} \left(e^{j2\pi k f_0 t} - e^{-j2\pi k f_0 t} \right)$$

we obtain the mathematically most elegant form of the Fourier series:

Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} \left[c_k e^{j2\pi k f_0 t} \right]$$

Complex Fourier coefficients c_k = spectral representation

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-j2\pi k f_0 t} dt$$

Discrete spectrum = line spectrum: The spectrum of the periodic signal is defined at the discrete (equidistant) frequencies $k \cdot f_0$.

- A periodic function can therefore also be understood as a weighted sum of complex oscillations.
- As with the real representation, integration must be carried out over one period. The starting time of the integration is irrelevant.

The DFT as an Approximation of the Fourier Series

Assuming that exactly one period of a periodic signal is sampled, the Fourier coefficients can be determined according to:

$$c_k \approx \frac{1}{N} X[k]$$
 for $k = -N/2, ..., N/2 - 1$

(holds for even *N*, similarly for odd *N*)

Equality applies in the above formula if the periodic signal is bandlimited and if the sampling theorem is fulfilled.

Spectral Analysis Fourier Series – Examples

Example: Derive the Fourier series coefficients of the signal

 $x(t) = 2 + 6\cos(2\pi f_0 t) + 4\sin(2\pi \cdot 2f_0 t) + 2\cos(2\pi \cdot 3f_0 t)$

 $(f_0 = 1 \text{kHz})$ with Matlab.

Example: Derive the Fourier series coefficients of the signal

 $x(t) = |\sin(2\pi \cdot 2f_0 t)|$

 $(f_0 = 1 \text{kHz})$ with Matlab.

J⊻U

Content

Matlab in teaching

- □ Examples of the Bachelor lecture *Signal Processing*
- Examples of the Master lecture Statistical and Adaptive Signal Processing

Matlab in research

- Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs

□ Example: UW-OFDM

Estimation Theory Maximum Likelihood (ML) Estimation

Example: Sinusoidal Parameter Estimation

Assume the data to be

 $x[n] = A\cos(\Omega n + \varphi) + w[n]$ n = 0, 1, ..., N - 1

with $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, A > 0 and $0 < \Omega < \pi$. A, Ω, φ shall be estimated.

FFT-based solution:
$$\widehat{\Omega} = \arg \max \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j\Omega n) \right|^2$$

 $\widehat{A} = \frac{2}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j\widehat{\Omega}n) \right|$

$$\hat{\varphi} = \arctan \frac{-\sum_{n=0}^{N-1} x[n] \sin(\widehat{\Omega}n)}{\sum_{n=0}^{N-1} x[n] \cos(\widehat{\Omega}n)}$$

Adaptive Filters

Adaptive filtering example:

y[k] = s[k] + x'[k]

y[k] could, e.g., be a measured ECG signal disturbed by a strong 50Hz interference, then it makes sense to feed an adaptive filter with $x[k] = \cos(2\pi \cdot 50$ Hz t) (see Matlab example).

Kalman Filters Extended Kalman Filter Example

J⊻U

Example: Vehicle Tracking

- Assumptions: Vehicle moving at constant speed, but perturbed by wind gusts, slight speed corrections, etc., as might occur in an aircraft. The measurements are noisy versions of the range and bearing.
 - Tracking with Extended Kalman Filter

Rudolf Kalman, Kurt Schlacher and Mario Huemer at EUROCAST 2013 in Gran Canaria

J⊻U

Content

I Matlab in teaching

- □ Examples of the Bachelor lecture *Signal Processing*
- Examples of the Master lecture Statistical and Adaptive Signal Processing

Matlab in research

- Example: Short Range Leakage Cancellation in Automotive Radar MMICs
- Example: Self Interference Cancellation in Mobile Phone Transceiver RFICs
- Example: UW-OFDM

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

Goal: Cancellation of interspersed signals from

narrow targets with emphasis on Phase Noise

J⊻U

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

J⊻U

Residual PN of SR leakage increases overall system noise floor, thus degrading detection sensitivity by approx. 6 dB

Target within channel is covered in noise

Short-Range Leakage Cancellation in FMCW Radar Transceivers (with Infineon)

Employing SR leakage cancelation significantly improves target detection sensitivity

J⊻U

- Main components of RF transceiver
 - □ Transmitter
 - □ Receiver
 - □ RF front-end

JYU

- $\blacksquare Higher data rates \rightarrow higher bandwidths$
- Carrier aggregation (CA) \rightarrow multiple Rx / Tx chains
- More bands \rightarrow increased RF front-end complexity

JZU

$$y_{\rm BB}^{\rm Tot}[n] = \underbrace{\frac{A_{\rm LNA}}{2} y_{\rm BB}^{\rm Rx}[n] \ast \bar{h}_{\rm s}[n]}_{\rm wanted Rx \ signal} + \underbrace{\frac{\alpha_2^{\rm I} + j\alpha_2^{\rm Q}}{2} \left| A_{\rm LNA} A_{\rm PA} x_{\rm BB}[n] \ast h_{\rm BB}^{\rm TxL}[n] \right|^2 \ast \bar{h}_{\rm s}[n]}_{\rm interference} + \underbrace{\frac{A_{\rm LNA}}{2} v_{\rm BB}[n] \ast \bar{h}_{\rm s}[n]}_{\rm noise}$$

J⊻U

JZU

J⊼∩

Performance Results

Source: A. Gebhard, C. Motz, R. S. Kanumalli, H. Pretl, and M. Huemer, "Nonlinear least-mean-squares type algorithm for secondorder interference cancellation in LTE-A RF transceivers," in 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2017, pp. 802–807. JZU

Basic Research Unique Word OFDM (FWF)

J⊻U

Novel signaling scheme for digital communications

CP1 Data CP1 CP2 Data CP2 CP3 ···	$\leftarrow T_{GI}$	\leftarrow T_{DFT}		$\leftarrow T_{GI}$	\leftarrow T_{DFT}			
	CP1	Data	CP1	CP2	Data	CP2	CP3	

$ \xrightarrow{T_{GI}} $	\star T_{DFT}		\bullet T_{DFT}		
UW	Data	UW	Data	UW	

Symbol generation

Bit error performance

Welch Spectrum

Further Research Topics

- Parameter estimation (with voestalpine)
- Non-linear adaptive filters
- NN-based data estimation for wireless systems (with SAL)
- Joint communications and sensing
- Feature extraction of ECG signals (with KUK Linz)
- HW architectures for DSP

_ _ _

Diploma theses in co-operation with HTLs possible and welcome!

THANK YOU!